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This paper presents a solution to the Simultaneous Localization and Map Building
(SLAM) problem for a mobile agent which navigates in an indoor environment
and it is equipped with a conventional laser range finder. The approach is based
on the stochastic paradigm and it employs a novel feature-based approach for the
map representation. Stochastic SLAM is performed by storing the robot pose
and landmark locations in a single state vector, and estimating it by means of a
recursive process. In our case, this estimation process is based on an extended
Kalman filter (EKF). The main novelty of the described system is the efficient
approach for natural feature extraction. This approach employs the curvature

information associated to every planar scan provided by the laser range finder. In
this work, corner feature has been considered. Real experiments carried out with a
mobile robot show that the proposed approach acquires corners of the environment
in a fast and accurate way. These landmarks permit to simultaneously localize the
robot and build a corner-based map of the environment.

1. Introduction

The difficulty of the simultaneous localization and map building (SLAM)

problem lies in the fact that an accurate estimation of the robot trajectory

is required to obtain a good map, and to minimize the unbounded growing

odometry errors requires to associate sensor measurements with a precise

map5. To increase the efficiency and robustness of the process, sensor

data have to be transformed in a more compact form before attempting to

compare them to the ones presented on a map or store them in the map

that is being built. In either case, the chosen map representation heavily

determines the precision and reliability of the whole task4. Typical choices

for the map representation include occupancy grids, topological maps and

feature maps1.
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In this paper, a feature based approach is employed to solve the SLAM

problem. Feature maps are a suitable representation for long-term conver-

gent SLAM in medium-scale environments1. It allows the use of multiple

models to describe the measurement process for different parts of the en-

vironment and it avoids the data smearing effect5. In order to achieve

consistent estimation of the robot pose, a basic stochastic SLAM algorithm

is used. This algorithm stores robot and landmarks locations in a state vec-

tor and updates these estimates using an extended Kalman filter (EKF).

This approach suffers from three main disadvantages: high computation

and storage costs, fragile data association and inconsistent treatment of

non-linearity1,5,2. In this work, we will demonstrate that all these weak-

nesses can be alleviated if a fast and reliable algorithm to extract landmarks

for the large set of noisy and uncertain data is employed. The proposed

landmark acquisition algorithm is based on the curvature information asso-

ciated to every scan provided by the laser range finder. Particularly, in this

work we only consider corner features. These corner features will permit to

simultaneously localize the robot and build a map of the environment.

The rest of the paper is organized as follows: Section 2 describes the

proposed EKF–SLAM algorithm, where the curvature-based corner acqui-

sition algorithm is included. Section 3 presents experimental results and,

finally, Section 4 summarizes conclusions and future work.

2. Description of the Proposed System

In the standard EKF-based approach to SLAM, the robot pose and land-

mark locations at time step k are represented by a stochastic state vector

xk
a with estimated mean x̂k

a and estimated error covariance Pk
a. The mean

vector x̂k
a contains the estimated robot pose, x̂k

v , and the estimated environ-

ment landmarks positions, x̂k
m, all with respect to a base reference W . This

concatenation is necessary as consistent SLAM relies on the maintenance

of correlations Pk
vm between the robot and the map1. In this work, we use

the robot pose at step k=0 as the base reference (W = x0
v). Thus, the map

can be initialized with zero covariance for the robot pose, x̂0
a = (0, 0, 0)T ,

P0
a = 0. Previous work has showed that this improves the consistency of the

EKF–SLAM algorithm2. For convenience, the k notation can be dropped

in this Section as the sequence of operations is apparent from its context.

Then, the mean x̂a and covariance Pa of the state vector can be defined as

x̂a =

[

x̂v

x̂m

]

Pa =

[

Pvv Pvm

Pmv Pmm

]

=

[

Pvv Pvm

PT
vm Pmm

]

(1)
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When the robot pose and map landmarks are stored in a single state vector,

stochastic SLAM1,5,2 is performed by estimating the state parameters via

a recursive process of prediction and correction. The prediction stage deals

with robot motion based on incremental dead reckoning estimates, and

increases the uncertainty of the robot pose estimate. Then, new landmarks

are acquired from the environment. These landmarks are associated to the

previously stored ones. The update stage employs this data association

to improve the overall state estimate. Finally, if a landmark is observed

for the first time, it is added to the state vector through an initialization

process called state augmentation. Next subsections deal with the stages of

the described EKF–SLAM algorithm. The proposed landmark acquisition

stage will be explained in subsection 2.2.

2.1. Prediction stage

When the robot moves from pose at step k−1 to pose at step k, its motion

is estimated by odometry. In our case, the system has been tested on a

four wheeled robot, where left and right wheels are mechanically coupled

and, thus, encoders only return right and left speeds. Assuming that the

robot state is represented by its pose, x̂v = (x̂v ŷv φ̂v)T , the prediction

stage only changes the robot pose part of the state vector and the Pv and

Pvm submatrices in the state covariance matrix. Map landmarks remain

stationary. Therefore, the predicted state is given by

x̂−

a =









x̂v + D · c

ŷv + D · s

φ̂v + ∆φ

x̂m









= f(x̂a, u) P−

a = ∇fxa
Pa∇fT

xa
+ Q (2)

c = cos φ̂v s = sin φ̂v

where u = (D ∆φ)T defines the translation and angular difference with

respect to the previous robot pose, and Q is the odometry covariance. The

Jacobian ∇fxa
is defined as

∇fxa
=

(

∂f

∂xa

)

(x̂a,u)

=

[

∇gxv
0vm

0mv Im

]

∇gxv
=





1 0 −D · s

0 1 D · c

0 0 1



 (3)

2.2. Curvature-based landmark acquisition stage

In this work, we characterize each range reading of the laser scan by a

curvature index. This index is adaptively filtered according to the distance
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between possible corners in the whole laser scan. This filtering permits

to remove noise, but scan features are nevertheless detected despite their

natural scale. For each range reading i = (xi, yi) of a laser scan, the

proposed method for corner acquisition consists of the following steps:

(1) Calculation of the maximum length of laser scan presenting no

discontinuities on the right and left sides of the range reading

i: Kf (i) and Kb(i), respectively. Kf (i) is calculated by com-

paring the Euclidean distance from i to its Kf (i)-th neighbour

(d(i, i + Kf (i))) to the real length of the laser scan between both

range readings(l(i, i+Kf(i))). Both distance tend to be the same in

absence of corners, even if laser scans are noisy. Otherwise, the Eu-

clidean distance is quite shorter than the real length. Thus, Kf (i)

is the largest value that satisfies

d(i, i + Kf (i)) > l(i, i + Kf (i)) − Uk (4)

where Uk is a constant value that depends on the noise level toler-

ated by the detector. Kb(i) is also set according to Eq. (4), but

using i − Kb(i) instead of i + Kf (i).

(2) Calculation of the local vectors
−→
fi and

−→
bi associated to each range

reading i. These vectors represent the variation in the x and y axis

between range readings i and i+Kf(i) and between i and i−Kb(i).

They are defined as
−→
fi = (xi+Kf (i)−xi, yi+Kf (i)−yi)

−→
bi = (xi−Kb(i)−xi, yi−Kb(i)−yi)

(5)

(3) Calculation of the angle associated to i. According to previous

works3, the angle at range reading i can be estimated as follows

|Kθ(i)| =
1

2
·

(

1 +

−→
fi ·

−→
bi

|
−→
fi | · |

−→
bi |

)

(6)

(4) Detection of corners over |Kθ(i)|. Corners are those range readings

which satisfy the following conditions: i) they are local peaks of the

curvature function and ii) their |Kθ(i)| values are over the minimum

angle required to be considered a corner instead of a spurious peak

due to remaining noise (θmin).

2.3. Data association stage

Once corner features have been acquired, they must be associated to pre-

viously stored ones. Correct correspondence of observed landmarks to map
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ones is essential for consistent map building because a single failure may

invalidate the whole process. In our case, landmarks are distinguishable

only by their positions. Therefore, correspondences established by the data

association stage are constrained by statistical geometric information. In

this work, the normalised innovation squared (NIS) defines the validation

gate or maximum discrepancy between a measurement z and a predicted

observation h(x̂j) for target xj
1. Given an observation innovation νij with

covariance Sij , the NIS forms a χ2 distribution. The gate is applied as a

maximum NIS threshold, γn. Then,

νij = z − h(x̂j) Sij = ∇hxa
P−

a ∇hT
xa

+ R NIS ≡ νT
ijS

−1
ij νij < γn (7)

The integral of the χ2 distribution from 0 to γn specifies the probability

that, if z is a true observation of target zj , the association will be accepted.

In our experiments, the innovation vector is of dimension 2, and the gate

γ2 equal to 6.0, if zj is truely an observation of landmark xj the association

will be accepted with 90% of probability.

The validation gate defines an ellipsoid in the observation space centred

about the predicted observation h(x̂j). Then, an acceptable observation

must fall within this ellipse. Data association ambiguity occurs if either

multiple observations fall within the validation gates of a particular target,

or a single observation lies within the gates of multiple targets. The most

common ambiguity resolution method is nearest neighbour data association.

Given a set of observations, Z, within the validation gate of target x, a

normalised distance NDl can be calculated to each zl ∈ Z

NDl = νT
l S−1

l νl + log|Sl| (8)

Nearest neighbour data association then chooses the observation that mini-

mizes NDl. This is the simplest data association algorithm and it can only

associate a single observation at each step k.

2.4. Updating stage

If an observation z is correctly associated to a map landmark estimate

(x̂i, ŷi), then the perceived information is related to the map by

ẑi = hi(x̂a) =

[

∆x · c + ∆y · s

−∆x · s + ∆y · c

]

(9)

∆x = (x̂i − x̂v) ∆y = (ŷi − ŷv)

The Kalman gain Ki can be obtained as

νi = z − hi(x̂
−

a ) Si = ∇hxa
P−

a ∇hT
xa

+ R Ki = P−

a ∇hT
xa

S−1
i (10)
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where R is the observation covariance and the Jacobian ∇hxa
is given by

∇hxa
=

(

∂hi

∂xa

)

x̂
−

a

=

[

−c −s −s · ∆x + c · ∆y 0 ... c s ... 0

s −c −c · ∆x − s · ∆y 0 ... −s c ... 0

]

(11)

It can be noted that the Jacobian ∇hxa
only presents non-zero terms align

with the positions of the robot states and the observed feature states in the

augmented state vector. The posterior SLAM estimate is determined from

x̂+
a = x̂−

a + Kiνi P+
a = P−

a −KiSiK
T
i (12)

2.5. State augmentation stage

As the environment is explored, new landmarks are observed and must

be added to the map. To initialise new landmarks, the state vector and

covariance matrix are augmented with the values of the new observation,

z, and its covariance, R, as measured relative to the observer.

x̂aug =

[

x̂a

z

]

Paug =





Pvv Pvm 0

PT
vm Pmm 0

0 0 R



 (13)

A function gi is employed to translate z = (xc yc)
T to a global location.

This transformation is defined as

gi(xv , z) =

[

xi

yi

]

=

[

xv + xc · c − yc · s

yv + xc · s + yc · c

]

(14)

Then, the augmented state can be initialized by performing a transforma-

tion to global coordinates by the function fi as follows

x̂+
a = fi(x̂aug) =

[

x̂a

gi(xv , z)

]

P+
a = ∇fxaug

Paug∇fT
xaug

(15)

The Jacobian ∇fxaug
can be derived as

∇fxaug
=

(

∂fi

∂xaug

)

x̂aug

=





Iv 0 0

0 Im 0

∇gxv
0 ∇gz



 (16)

where ∇gxv
and ∇gz are as follows

∇gxv
=

[

1 0 −xc · s − yc · c

0 1 xc · c − yc · s

]

∇gz =

[

c −s

s c

]

(17)

The posterior SLAM covariance matrix, P+
a , is as follows

P+
a =





Pv Pvm Pv∇gT
xv

PT
vm Pm Pvm∇gT

xv

∇gxv
Pv ∇gxv

Pvm ∇gxv
Pv∇gT

xv
+ ∇gzR∇gT

z



 (18)
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Figure 1. a) Estimated trajectory of the robot using the proposed landmark detection
method; and b) Estimated trajectory of the robot using a slower landmark acquisition
rate.

3. Experimental Results

Figs. 1.a and 1.b show the experimental results obtained by running

two different landmark acquisition rates. Figures illustrate the estimated

trajectory. The robot pose uncertainty has been drawn over the trajec-

tory. Fig. 1.a has been generated using the proposed landmark acquisition

algorithm. The whole EKF–SLAM algorithm runs every 200 ms on the

400MHz Versak6 PC 104+ embedded on our Pioneer 2AT mobile platform.

The landmark acquisition algorithm only takes 25 ms including 180o laser

data acquisition. It can be noted that the robot pose uncertainty is bounded

due to a more frequent updating. To obtain the estimated trajectory of Fig.

1.b, the robot has been moved through the same path. However, in this

case the landmark acquisition algorithm is slower. Then, less landmarks

are acquired and the updating rate decreases. It can be appreciated that

the robot pose uncertainty is higher and its pose estimation is poorer than

in Fig. 1.a.

4. Conclusions and Future Work

Experiments show that EKF–based SLAM problems can be alleviated when

a fast and reliable landmark acquisition algorithm is employed. The pro-

posed landmark extraction algorithm reduces the computational cost as-

sociated to the whole process. This fact is specially interesting because
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it avoids large periods without suitable update process. The increasing of

the updating rate reduces the robot pose uncertainty and avoids that data

association becomes very fragile1.

On the other hand, it has been shown that in the basic EKF–SLAM

framework, linearization errors produce inconsistency problems1. These

problems can be reduced using local maps or robocentric mapping2. Fu-

ture work will be focused on the combination of these techniques with the

proposed fast landmark extraction approach in order to further improve

map consistency. Besides, a batch data association method would improve

the updating stage because it provides more information in the innovation1.
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